Showing posts with label Darwin. Show all posts
Showing posts with label Darwin. Show all posts

Great evolution thinkers you should know about

If you follow a paleo diet, you follow a diet that aims to be consistent with evolution. This is a theory that has undergone major changes and additions since Alfred Russel Wallace and Charles Darwin proposed it in the 1800s. Wallace proposed it first, by the way, even though Darwin’s proposal was much more elaborate and supported by evidence. Darwin acknowledged Wallace's precedence, but received most of the credit for the theory anyway.

(Alfred Russel Wallace; source: Wikipedia)

What many people who describe themselves as paleo do not seem to know is how the theory found its footing. The original Wallace-Darwin theory (a.k.a. Darwin’s theory) had some major problems, notably the idea of blending inheritance (e.g., blue eye + brown eye = somewhere in between), which led it to be largely dismissed until the early 1900s. Ironically, it was the work of a Catholic priest that provided the foundation on which the theory of evolution would find its footing, and evolve into the grand theory that it is today. We are talking about Gregor Johann Mendel.

Much of the subsequent work that led to our current understanding of evolution sought to unify the theory of genetics, pioneered by Mendel, with the basic principles proposed as part of the Wallace-Darwin theory of evolution. That is where major progress was made. The evolution thinkers below are some of the major contributors to that progress.

Ronald A. Fisher. English statistician who proposed key elements of a genetic theory of natural selection in the 1910s, 1920s and 1930s. Fisher showed that the inheritance of discrete traits (e.g., flower color) described by Gregor Mendel has the same basis as the inheritance of continuous traits (e.g., human height) described by Francis Galton. He is credited, together with John B.S. Haldane and Sewall G. Wright, with setting the foundations for the development of the field of population genetics. In population genetics the concepts and principles of the theories of evolution (e.g., inheritance and natural selection of traits) and genetics (e.g., genes and alleles) have been integrated and mathematically formalized.

John B.S. Haldane. English geneticist who, together with Ronald A. Fisher and Sewall G. Wright, is credited with setting the foundations for the development of the field of population genetics. Much of his research was conducted in the 1920s and 1930s. Particularly noteworthy is the work by Haldane through which he mathematically modeled and explained the interactions between natural selection, mutation, and migration. He is also known for what is often referred to as Haldane’s principle, which explains the direction of the evolution of many species’ traits based on the body size of the organisms of the species. Haldane’s mathematical formulations also explained the rapid spread of traits observed in some actual populations of organisms, such as the increase in frequency of dark-colored moths from 2% to 95% in a little less than 50 years as a response to the spread of industrial soot in England in the late 1800s.

Sewall G. Wright. American geneticist and statistician who, together with Ronald A. Fisher and John B.S. Haldane, is credited with setting the foundations for the development of the field of population genetics. As with Fisher and Haldane, much of his original and most influential research was conducted in the 1920s and 1930s. He is believed to have discovered the inbreeding coefficient, related to the occurrence of identical genes in different individuals, and to have pioneered methods for the calculation of gene frequencies among populations of organisms. The development of the notion of genetic drift, where some of a population’s traits result from random genetic changes instead of selection, is often associated with him. Wright is also considered to be one of pioneers of the development of the statistical method known as path analysis.

Theodosius G. Dobzhansky. Ukrainian-American geneticist and evolutionary biologist who migrated to the United States in the late 1920s, and is believed to have been one of the main architects of the modern evolutionary synthesis. Much of his original research was conducted in the 1930s and 1940s. In the 1930s he published one of the pillars of the modern synthesis, a book titled Genetics and the Origin of Species. The modern evolutionary synthesis is closely linked with the emergence of the field of population genetics, and is associated with the integration of various ideas and predictions from the fields of evolution and genetics. In spite of Dobzhansky’s devotion to religious principles, he strongly defended Darwinian evolution against modern creationism. The title of a famous essay written by him is often cited in modern debates between evolutionists and creationists regarding the teaching of evolution in high schools: Nothing in Biology Makes Sense Except in the Light of Evolution.

Ernst W. Mayr. German taxonomist and ornithologist who spent most of his life in the United States, and is believed, like Theodosius G. Dobzhansky, to have been one of the main architects of the modern evolutionary synthesis. Mayr is credited with the development in the 1940s of the most widely accepted definition of species today, that of a group of organisms that are capable of interbreeding and producing fertile offspring. At that time organisms that looked alike were generally categorized as being part of the same species. Mayr served as a faculty member at Harvard University for many years, where he also served as the director of the Museum of Comparative Zoology. He lived to the age of 100 years, and was one of the most prolific scholars ever in the field of evolutionary biology. Unlike many evolution theorists, he was very critical of the use of mathematical approaches to the understanding of evolutionary phenomena.

William D. Hamilton. English evolutionary biologist (born in Egypt) widely considered one of the greatest evolution theorists of the 20th Century. Hamilton conducted pioneering research based on the gene-centric view of evolution, also know as the “selfish gene” perspective, which is based on the notion that the unit of natural selection is the gene and not the organism that carries the gene. His research conducted in the 1960s set the foundations for using this notion to understand social behavior among animals. The notion that the unit of natural selection is the gene forms the basis of the theory of kin selection, which explains why organisms often will instinctively behave in ways that will maximize the reproductive success of relatives, sometimes to the detriment of their own reproductive success (e.g., worker ants in an ant colony).

George C. Williams. American evolutionary biologist believed to have been a co-developer in the 1960s, together with William D. Hamilton, of the gene-centric view of evolution. This view is based on the notion that the unit of natural selection is the gene, and not the organism that carries the gene or a group of organisms that happens to share the gene. Williams is also known for his pioneering work on the evolution of sex as a driver of genetic variation, without which a species would adapt more slowly in response to environmental pressures, in many cases becoming extinct. He is also known for suggesting possible uses of human evolution knowledge in the field of medicine.

Motoo Kimura. Japanese evolutionary biologist known for proposing the neutral theory of molecular evolution in the 1960s. In this theory Kimura argued that one of the main forces in evolution is genetic drift, a stochastic process that alters the frequency of genotypes in a population in a non-deterministic way. Kimura is widely known for his innovative use of a class of partial differential equations, namely diffusion equations, to calculate the effect of natural selection and genetic drift on the fixation of genotypes. He has developed widely used equations to calculate the probability of fixation of genotypes that code for certain phenotypic traits due to genetic drift and natural selection.

George R. Price. American geneticist known for refining in the 1970s the mathematical formalizations developed by Ronald A. Fisher and William D. Hamilton, and thus making significant contributions to the development of the field of population genetics. He developed the famous Price Equation, which has found widespread use in evolutionary theorizing. Price is also known for introducing, together with John Maynard Smith, the concept of evolutionary stable strategy (ESS). The EES notion itself builds on the Nash Equilibrium, named after its developer John Forbes Nash (portrayed in the popular Hollywood film A Beautiful Mind). The concept of EES explains why certain evolved traits spread and become fixed in a population.

John Maynard Smith. English evolutionary biologist and geneticist credited with several innovative applications of game theory (which is not actually a theory, but an applied branch of mathematics) in the 1970s to the understanding of biological evolution. Maynard Smith is also known for introducing, together with George R. Price, the concept of evolutionary stable strategy (EES). As noted above, the EES notion builds on the Nash Equilibrium, and explains why certain evolved traits spread and become fixed in a population. The pioneering work by John Maynard Smith has led to the emergence of a new field of research within evolutionary biology known as evolutionary game theory.

Edward O. Wilson. American evolutionary biologist and naturalist who coined the term “sociobiology” in the 1970s to refer to the systematic study of the biological foundations of social behavior of animals, including humans. Wilson was one of the first evolutionary biologists to convincingly argue that human mental mechanisms are shaped as much by our genes as they are by the environment that surrounds us, setting the stage for the emergence of the field of evolutionary psychology. Many of Wilson’s theoretical contributions in the area of sociobiology are very general, and apply not only to humans but also to other species. Wilson has been acknowledged as one of the foremost experts in the study of ants’ and other insects’ social organizations. He is also known for his efforts to preserve earth’s environment.

Amotz Zahavi. Israeli evolutionary biologist best known for his widely cited handicap principle, proposed in the 1970s, which explains the evolution of fitness signaling traits that appear to be detrimental to the reproductive fitness of an organism. Zahavi argued that traits evolved to signal the fitness status of an organism must be costly in order to the reliable. An example is the large and brightly colored trains evolved by the males of the peacock species, which signal good health to the females of the species. The male peacock’s train makes it more vulnerable to predators, and as such is a costly indicator of survival success. Traits used for this type of signaling are often referred to as Zahavian traits.

Robert L. Trivers. American evolutionary biologist and anthropologist who proposed several influential theories in the 1970s, including the theories of reciprocal altruism, parental investment, and parent-offspring conflict. Trivers is considered to be one of the most influential living evolutionary theorists, and is a very active researcher and speaker. His most recent focus is on the study of body symmetry and its relationship with various traits that are hypothesized to have been evolved in our ancestral past. Trivers’s theories often explain phenomena that are observed in nature but are not easily understood based on traditional evolutionary thinking, and in some cases appear contradictory with that thinking. Reciprocal altruism, for example, is a phenomenon that is widely observed in nature and involves one organism benefiting another not genetically related organism, without any immediate gain to the organism (e.g., vampire bats regurgitating blood to feed non-kin).

There are many other more recent contributors that could arguably be included in the list above. Much recent progress has been made in interdisciplinary fields that could be seen as new fields of research inspired in evolutionary ideas. One such field is that of evolutionary psychology, which has emerged in the 1980s. New theoretical contributions tend to take some time to be recognized though, as will be the case with ideas coming off these new fields, because new theoretical contributions are invariably somewhat flawed and/or incomplete when they are originally proposed.

Diagnosing Darwin's multiple gastrointestinal diseases

Charles Darwin (Credit: Wikimedia)
Throughout most of Charles Darwin's adult life, the famed author of On the Origin of Species struggled with repeated episodes of severe abdominal pain, nausea and vomiting that could last for hours at a time, often occurring about three hours after breakfast, and thought to have been brought on by times of emotional stress.

England's physicians of the time could not properly diagnose the syndrome of cyclic vomiting, although they tried by suggesting its etiology was anything to do with allergies, gout, and mental overwork. But what of an assessment of Darwin's symptoms by modern physicians of today?

On Friday, May 6, modern physicians gathered to discuss Darwin's lifelong illness at the 18th Historical Clinicopathological Conference sponsored by University of Maryland Health Care System. The conference previously has examined and provided modern medical diagnoses of other prominent historical figures such as Abraham Lincoln and Edgar Allan Poe. The scientists chose Darwin for this year's conference to commemorate the naturalist's 200th birthday.

At the conference, the medical researchers determined that the nature of Darwin's sickness may be explained by multiple gastrointestinal illnesses he might of contracted while traveling to remote areas of South America, the Pacific, Far East, and Africa. A transmission of parasites, for example, may have led to what would become chronic "Chagas disease" and "peptic ulcer disease," further explaining the onset of Darwin's cardiac symptoms and eventual heart disease.


Chagas disease is caused by the parasite Trypanosoma cruzi, which transmitted to humans by blood-sucking insects known as reduviid bugs found throughout Mexico, Central and South America living in mud or adobe huts and feeding on humans. The insects probably bit at Darwin's body as he was sleeping, passing the parasites via their feces, then entered his body through eyes, mouth or an open wound facilitated by the unsuspecting victim scratched himself. Chagas disease can have an acute phase in which symptoms of nausea and vomiting combined with headaches could last for weeks or months, then if untreated can lead to a chronic phase.

“Chagas would describe the heart disease, cardiac failure or ‘degeneration of the heart’ — the term used in Darwin’s time to mean heart disease — that he suffered from later in life and that eventually caused his death,” said Sidney Cohen, M.D., who led the diagnosis and was quoted in a press release. Dr. Cohen is a professor of medicine and director of research of Jefferson Medical College of Thomas Jefferson University in Philadelphia.

Peptic ulcer disease is caused by infection with the common bacteria, Helicobacter pylori. Darwin probably contracted the bacteria from contact with saliva or feces of another human or from drinking untreated water. Then, the bacteria making itself at home in Darwin's stomach by creating a low-acid "buffer zone," could also explain symptoms of severe abdominal pain, bloating, frequent burping, nausea and vomiting.

“H. pylori and Chagas disease can be contracted in the same areas of the world and often occur together,” Cohen said.

Why was it supposed that Darwin suffered from two or more illnesses? According to Cohen, “Darwin’s lifelong history does not fit neatly into a single disorder based historically only upon symptom assessment. I make the argument that Darwin had multiple illnesses in his lifetime.”

Medical History

The clinicians evaluated Darwin's medical history, which included a look at his excellent health as a child (with an occasional upset stomach; happens to us all) followed by his leaving England at age 22 on a five-year voyage on the Beagle. During his travels, Darwin suffered from frequent seasickness, fevers, two instances of food poisoning, intermittent boils, an inflamed knee and arm, and "Chilean fever."

A year after his arrival back in England, at age 27, began what would become a lifelong illness. He complained of violent cardiac palpitations and headaches at 29, which returned once at 51 and just before he died. In his 30s he had a few episodes of fingertip numbness, buzzing in his head, seeing stars, involuntary hand twitching. In his 50s, he complained of weakness and intermittent rheumatism. At age 57, he also was bruised badly after his horse fell and rolled on him.

A look at his diet and lifestyle suggests Darwin's behavior was not unlike those of most other scientists of the day. It included smoking the occasional cigarette and cigar, moderate drinking of brandy, wine and port, and walking as his only exercise.

His family history included his father, who was morbidly obese, and suffered from gout. He had an older brother who struggled with depression and died at age 77 of an unknown cause and three sisters who all died of unknown causes.

In the last decade before his death, Darwin's health seemed to improve as his chronic cyclic nausea and vomiting eased up. But his memory began to decline and at age 72, he suffered a sudden "fit of dazzling" and irregular pulse while hiking. He developed a cough alleviated by quinine. Later one evening while eating dinner, he was seized by dizziness and he fainted while trying to reach the couch. He regained consciousness, drank brandy and seemed to recover, but then started to vomit relentlessly until what lasted until the next day when he lost consciousness again and died.

At the time of his death at age 73, he was diagnosed with "angina attacks with heart failure and degeneration of the heart and greater blood vessels."

Applied evolutionary thinking: Darwin meets Washington

Charles Darwin, perhaps one of the greatest scholars of all time, thought about his theory of mutation, inheritance, and selection of biological traits for more than 20 years, and finally published it as a book in 1859.  At that time, many animal breeders must have said something like this: “So what? We knew this already.”

In fact George Washington, who died in 1799 (many years before Darwin’s famous book came out), had tried his hand at what today would be called “genetic engineering.” He produced at least a few notable breeds of domestic animals through selective breeding. Those include a breed of giant mules – the “Mammoth Jackstock” breed. Those mules are so big and strong that they were used to pull large boats filled with coal along artificial canals in Pennsylvania.

Washington learned the basic principles of animal breeding from others, who learned it from others, and so on. Animal breeding has a long tradition.

So, not only did animal breeders, like George Washington, had known about the principles of mutation, inheritance, and selection of biological traits; but they also had been putting that knowledge into practice for quite some time before Darwin’s famous book “The Origin of Species” was published.

Yet, Darwin’s theory has applications that extend well beyond animal breeding. There are thousands of phenomena that would look very “mysterious” today without Darwin’s theory. Many of those phenomena apply to nutrition and lifestyle, as we have been seeing lately with the paleo diet movement. Among the most amazing and counterintuitive are those in connection with the design of our brain.

Recent research, for instance, suggests that “surprise” improves cognition. Let me illustrate this with a simple example. If you were studying a subject online that required memorization of key pieces of information (say, historical facts) and a surprise stimulus was “thrown” at you (say, a video clip of an attacking rattlesnake was shown on the screen), you would remember the key pieces of information (about historical facts) much better than if the surprise stimulus was not present!

The underlying Darwinian reason for this phenomenon is that it is adaptively advantageous for our brain to enhance our memory in dangerous situations (e.g., an attack by a poisonous snake), because that would help us avoid those situations in the future (Kock et al., 2008; references listed at the end of this post). Related mental mechanisms increased our ancestors’ chances of survival over many generations, and became embedded in our brain’s design.

Animal breeders knew that they could apply selection, via selective breeding, to any population of animals, and thus make certain traits evolve in a matter of a few dozen generations or less. This is known as artificial selection. Among those traits were metabolic traits. For example, a population of lambs may be bred to grow fatter on the same amount of food as leaner breeds.

Forced natural selection may have been imposed on some of our ancestors, as I argue in this post, leading metabolic traits to evolve in as little as 396 years, or even less, depending on the circumstances.

In a sense, forced selection would be a bit like artificial selection. If a group of our ancestors became geographically isolated from others, in an environment where only certain types of food were available, physiological and metabolic adaptations to those types of food might evolve. This is also true for the adoption of cultural practices; culture can also strongly influence evolution (see, e.g., McElreath & Boyd, 2007).

This is why it is arguably a good idea for people to look at their background (i.e., learn about their ancestors), because they may have inherited genes that predispose them to function better with certain types of diets and lifestyles. That can help them better tailor their diets to their genetic makeup, and also understand why certain diets work for some people but not for others. (This is essentially what medical doctors do, on a smaller time scale, when they take a patients' parents health history into consideration when dispensing medical advice.)

By ancestors I am not talking about Homo erectus here, but ancestors that lived 3,000; 1,000; or even 500 years ago. At times when medical care and other modern amenities were not available, and thus selection pressures were stronger. For example, if your no-so-distant ancestors have consumed plenty of dairy, chances are you are better adapted to consume dairy than people whose ancestors have not.

Very recent food inventions, like refined carbohydrates, refined sugars, and hydrogenated fats are too new to have influenced the genetic makeup of anybody living today. So, chances are, they are bad for the vast majority of us. (A small percentage of the population may not develop any hint of diseases of civilization after consuming them for years, but they are not going to be as healthy as they could be.) Other, not so recent, food inventions, such as olive oil, certain types of bread, certain types of dairy, may be better for some people than for others.

References:

Kock, N., Chatelain-Jardón, R., & Carmona, J. (2008). An experimental study of simulated web-based threats and their impact on knowledge communication effectiveness. IEEE Transactions on Professional Communication, 51(2), 183-197.

McElreath, R., & Boyd, R. (2007). Mathematical models of social evolution: A guide for the perplexed. Chicago, IL: The University of Chicago Press.
Image and video hosting by TinyPic